ÖNEMLİ UYARI : (IP KONTROLLÜ ÜYELİK GÜVENLİĞİ)

Giriş yaptığınız üyelik bireysel olarak sadece 1 (bir) kişilik kullanıcının kullanımı içindir. Üyeliklerimiz kurumsal değil kişiseldir. Giriş yapıldıktan sonra aynı kullanıcı adı ve şifre ile başka bir IP numaralı kullanıcı girişi yapılırsa üyeliğiniz otomatik olarak BLOKE olur. Lütfen şifrenizi paylaşmayınız. Üyeliğinizi giriş yaptıktan sonra “GÜVENLİ ÇIKIŞ” yaparak başka bir yerde, başka bir bilgisayarda kullanmanızda sakınca yoktur. Şifrenizi ailenizden biri kullansa dahi sistem aynı anda birden fazla giriş yapılmasına izin vermeyecektir.

Eğer bu üyelik size ait değilse lütfen “GÜVENLİ ÇIKIŞ” yapınız. Aksi taktirde şifresini sizinle paylaşan gerçek üyenin üyeliği BLOKE olacaktır.


Okudum ve Kabul Ediyorum

Hesap Sahibinin Zarar Görmemesi İçin Çıkış Yapmak İstiyorum

Yardım Merkezi
 

› ÇARPANLARA AYIRMA
Kaynakça()  Resim-Sekil()  Tablo()     10 Sayfa  [ Geri Dön ]

Dökümanı İndirebilmek İçin Üye Girişi YapınızHenüz Üye Değilseniz Buraya Tıklayıp Üye Olabilirsiniz
Önemli NotSitedeki dosyalar üye olmak için öğrencilerin gönderdiği dosyalardan oluşmaktadır. Eğitim ve öğretim amaçlıdır. Bu dosyaların tümünün editörden gözden geçirilmesi yoğun bir emek gerektiğinden, gözden kaçmış olanlar olabilir. Ayrıca bir üyemiz tarafından gönderilen bir dosyanın telif hakkına tabi olup olmadığını her durumda tespit edemeyebiliriz. Böyle bir durumu fark etmeniz halinde lütfen yardım bölümümüzden bize durumu bildirin. Siteden kaldırılması için dosya numarasını mesajınıza ekleyiniz. İlgili dosya 48 saat içerisinde derhal siteden kaldırılır.. Telif haklarına gösterilen özen konusunda bize yardımcı olduğunuz için teşekkür ederiz..
Dosya No : 79086 - Dosyanın Siteden Kaldırılması İçin Buraya Tıklayınız

İçerik ÇARPANLARA AYIRMA

Bir Polinomun Çarpanları:
Tanım..: P(x) polinomu sabit olmayan ve derecesi P(x)’in derecesinden küçük olan polinomları
çarpımı olarak yazabiliyorsa bu polinomlardan her birine, P(x) polinomun bir çarpımı denir.

Q(x)=x+2
T(x)=x2-1 Polinomlarının çarpımı olan P(x) polinomunu bulalım:
P(x)=Q(x).T(x)=(x+2).( x2-1)=x3+2x2-x-2’dir.
Q(x)=(x+2) ve T(x)= x2-1 Polinomlarına P(x)= x3+2x2-x-2 polinomunun çarpanları denir.

P(x)= x3+2x2-x-2 polinomunu, polinomların çarpımı biçiminde yazmaya,P(x) polinomunu çarpanlarına ayırma denir.
P(x)=Q(x).T(x)
X2+2x2-x-2=(x+2).( x2-1)=(x+2).(x-1).(x+1)’dir
.
çarpım çarpanlar çarpanlar
Bir polinomu birden fazla polinomun çarpımı biçiminde yazmaya, bu polinomu çarpanlarına ayırma denir.
Tanım..:R(x)’de bir polinom bir veya birden fazla dereceden birden fazla polinomun çarpımı biçimine yazılmış ise, bu polinom R(x)’de çarpanlara ayrılmıştır veya indirgenmiştir denir.

Örnek:3x3-12x=3x(x2-4)=3x(x-2).(x+2) biçiminde yazılabilir.Çarpma işlemleri yapılarak bu eşitliğin doğruluğu görebilir.
Her P(x) polinomu R(x)’de çarpanlarına ayrılamaz.

Tanım:R(x)’de, bir veya daha fazla dereceden birden fazla polinomun çarpımı biçimde yazılamayan polinomlara R(x)’de indirgenemez polinom denir. Başka bir yönden açıklarsak, sabit olmayan ve birden fazla polinomun çarpımı biçiminde yazılamayan polinomlara indirgenemeyen polinomlar denir.
Boş katsayısı 1 olan indirgenemeyen polinomlara ise asal polinom denir.

Örneğin;
x2+1  R(x) 3x2 +9  R(x)
x2+2x+4  R(x) 2 x2-3x+7  R(x)
Polinomların her biri indirgenemez polinomdur. Bunlardan baştan ikisinin katsayıları 1 olduğu için bu ikisinde asal polinomdur.

x2-2=(x- 2 ).(x+ 2 ) olduğundan, R(x) de indirgenebilir polinom olduğu halde; x2-2 polinomu

Z(x)’de indirgenemez polinomdur:bunun gibi;

x2- 1 =(x- 1 ).(x + 1 ) olduğu için x2- 1 polinomu R(x) ve Q(x) indirgenebilir. Polinomdur, fakat
4 2 2 4
x2- 1 polinomu Z(x) ‘de indirgenemez.
4
Polinomları Çarpanlara Ayırma Yöntemleri

Polinomların çarpanlara ayrılmasında genel bir yöntem yoktur. Ancak bazı özel durumlara göre, çarpanlara Ayırma yöntemleri vardır.

1-Ortak Çarpan Parantezine Alarak Çarpanlara Ayırma:
Bir ifadede ortak çarpan varsa bu ifade çarpmanın toplama üzerine dağılma özelliğinden yararlanarak çarpanlara ayrılır.
-1-
Ortak çarpan parantezine olarak çarpanlara ayırmada ortak olan çarpanların en küçük üslüsü olan ortak çarpandır.
Örnekler:
1- 2y2(x-7)+y(7-x)= 2y2(x-7)-y(7-x)
= (x-7).( 2y2-y)
= (x-7) .( 2y2-y)y
= y(x-7). (2y2-1) bulunur.
2- 4x-12 polinomunu bir reel sayı ile bir polinomun çarpımı şekilde yazalım.
Çözüm:Her iki terimde bölen en büyük sayı olan 4, parantezin önüne yazılır. Her iki terimde bölen ortak değişken yoktur. Polinomun iki terimde 4’e bölünür ve bölümler parantezin içine yazılır.
4x-12=4(x-3) biçimde yazılır
.
3-6x3y2-9 x2y3+12x y4 polinomunu çarpanlarına ayıralım.
Çözüm: Bu üç terimli ifadenin her terimi 3xy2 ifadesi ile bölünür. Şu halde, 6x3y2-9 x2y3+12x y4 =3xy2(2x2-3xy+4y2) biçimde çarpanlarına ayrılmış olur.

4-(3a-1).(b+2)-(3a-1).(2-b) ifadesini çarpanlarına ayıralım:
Çözüm:Her iki terimde ortak olan çarpan (3a-1)’dir.

(3a-1).(b+2)-(3a-1).(2-b)=(3a-1)[(b+2)-(2-b)]
=(3a-1).(b+2-2+b)
=2b(3a-1) olur.

5-P(x)=3x2(x-4a)-2a2(x-4a)-( 3x2+2a2).(x-4a) ifadesini çarpanlarına ayıralım:
Çözüm: P(x)=3x2(x-4a)-2a2(x-4a)-( 3x2+2a2).(x-4a) şeklinde yazabiliriz.
Her terimde (x-4a) çarpımı ortaktır. Bu ifade ortak çarpan parantezine alınır.
=(x-4a)[ 3x2+2a2(3x2+2a2)]
=6x2(x-4a) şeklinde çar





Güncel Aranan Ödevler

ağırlamak, imansız, kipe, şişirme, ihracat staj, 81 ilimizin özelligi, konumlanma, hooke, 42 460, isim çekim ekleri, savana, zayi olmak, tamer, cumhuriyet döneminde kadınlar, going to future tense, bir sürgün, araba tarihi, roman özeti, alışveriş, hail, ilan, istanbulun tarihi yerleri ve eserleri, çürüme, elektromagnetik dalgalar, belirtile tablosu, etkenlik, ampermetre, iklim ve iklim çeşitleri, yönetimin işlevleri, 17. yy, 1.sınıf yıl sonu zümre, oğul otu, ünlü türk haritacıları, ahmet turan oflazoğlu, video bakım, herek, cebiri kim buldu, sirkeli, mysql, avrupalı, matematik kitap inceleme, qfd, anı,, arabacı, 18.ünite, devlet kuşu, nadim, torna, mobilya test, sis bombası, sigortalı, amfoter maddeler, suratsız, Hurufî, serenat, istiklal marşının, futbolcu, araştırma stajı, bilgisayar kullanma, okumak ilgili deyim, comparative, insan yuzu simetrik mi, thomas more, balyan, moliere cimri, yadsımak, ayak kirası, bornova liseler, sürülüş, tekelleşme, ahitname, istanbulun yönetimi, seher demir, balık sinir sistemi, gün doğusu, avlak, g 8, telekomunikasyon, patates, delikliler, kara sarı, adnan a.ş., kütle ve rijitlik merkezi, ışık küre, tipolojik, örgütleniş, 6 lı piriz, bakırla kapla, bir mum al da derdine yan, eğitimde materyal kullanımı, insanda ses degişimi, 1980 dönemi türkiyenin ekonomik siyasi ve kültürel yapısı, ping, dertli, açık maaşı, atatürk ile ilgili şarkı sözleri, aracı, şu bu, fabrika staj rapor, endüstri devrimi, öğretimin hedefleri, oks sinav sonucu, laplace dönüşümü, belirteç, duruk, ihtiyatlı davranmak, türkiyedeki madenler, sürücülük, satış sonrası müşteri memnuniyeti, ondüle, manda ve himaye, ayaktan, sis perdesi, vakıf, fevrî, cumhuriyet bayramı tiyatro, iş yaşamında stres, gark olmak, kül, gelen, sınıf eş anlamlısı, haylaz, comperatıve, insancı, söylev yazısı, şeytanlık, santimetre, atatürk soy ağacı, anahtar romanı, trt tarihi, fototaksi, örüntüler, balak, darülfünun, şaşırtma, kilitlemek, betimleyici anlatim, ampulu bulan kişi, ahmak, güveylik, dasitan, sermest, comet, biçimsel iletişim sistemi, kaldırımlar, elma, parelel kenar, ingilizce mektup yazma, uydurulma, doğrusal programlama oyun, görünürlük, bankalar tarihi, nasrettin hocanın fıkraları, ac kıyıcılar, tekstil nedir, 5 s, haymana, arkeloji, erkekli, ilkokul testleri, şekilsiz, gönderilme, çuha, Etiyopyalı, yer ölçümü, kayış, final soruları, salyangoz, gülünç, bati inaçlar, olurluk, abıyotık, cam detayları, erkek bakır, sırıtmak, atatürkün teknoloji ile ilgili sözleri, golge, şömüz, 4. sınıf fen ve teknoloji, yatar koltuk, açıköğretim soruları, tasfiyeci, gazların günlük hayata etkileri, 36-72 aylık çocuklar için okul öncesi eğitim günlük plan, püre, yazım kuralları, katılaşmak, muvazaalı, erozyon çığ, şirpençe, güçlenmek, hollanda kültürü, sistem yaklaşımının evrimi, 360 derece performans, parlamak, işletilme, güneş ışınları, organon kitabı, atatürk ölçüler yenilikleri,